
PROBLEMA 1 (2 puntos)

Determinar la evolución temporal de V_0 en el circuito de la figura. Despreciar los efectos de conmutación internos del transistor.

DATOS: Transistor ->
$$\beta$$
 = 100 $V_{BE\gamma}$ = 0,5V V_{BEon} = 0,7V V_{CEsat} = 0,2V Diodo -> V_{γ} = 0V R_f = 40 Ω R_r = ∞

* t < 0 => Se supone la bobina en régimen permanente por lo que se comportaría como un cortocircuito y el diodo estaría en corte. El circuito equivalente sería:

$$V_{TH} = (10V - 2V) \cdot \frac{10K}{40K + 10K} + 2V = 3.6V$$
 $R_{TH} = 40K // 10K = \frac{40K \cdot 10K}{40K + 10K} = 8K$

Analizamos el circuito y se obtiene así la corriente por la bobina I_L y la tensión de salida V_O . Como $V_{TH} > V_{BE\gamma}$, el transistor conduce.

$$I_{B} = \frac{3.6V - 0.7V}{8K} = 0.36mA; \qquad I_{Csat} = \frac{10V - 0.2V}{1K} = 9.8mA < \beta \cdot I_{B} = 36mA \Rightarrow \text{Transistor saturado}$$

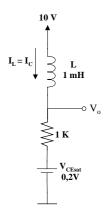
Entonces esto implica que en el instante t = 0: $I_L = I_C = 9.8 \text{ mA}$ y $V_O = 10 \text{ V}$

* $t = 0^+ => La$ señal de entrada conmuta a -2 V y si se calcula la tensión V_{TH} en el circuito de entrada del equivalente Thevenin se obtiene:

$$V_{TH} = (10V + 2V) \cdot \frac{10K}{40K + 10K} - 2V = 0.4V$$

Como $V_{TH} < V_{BE\gamma} =>$ el transistor está en corte y la bobina empezaría a descargarse por el diodo que empezaría a conducir. el circuito equivalente sería:

$$I_{L}(0^{+}) = 9.8mA \Rightarrow V_{O}(0^{+}) = 10V + I_{L}(0^{+}) \cdot R_{f} = 10V + 9.8mA \cdot 40\Omega = 10,392V$$

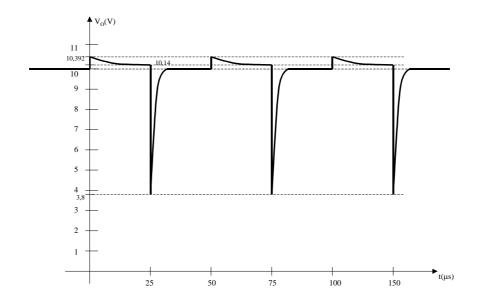

$$I_{L}(0^{+}) = 9.8mA \Rightarrow V_{O}(0^{+}) = 10V + I_{L}(0^{+}) \cdot R_{f} = 10V + 9.8mA \cdot 40\Omega = 10,392V$$

$$I_{L}(t) = I_{F} + (I_{0} + I_{F}) \cdot e^{-\frac{t}{\tau}}$$

$$I_{F} = 0 \qquad I_{0} = 9.8mA \qquad \tau = \frac{L}{R_{f}} = \frac{1mH}{40\Omega} = 25\mu s$$

$$I_L(t) = 9.8mA \cdot e^{-\frac{t}{25\mu s}} \Rightarrow I_L(25\mu s^-) = 9.8mA \cdot e^{-1} = 3.6mA \Rightarrow V_0(25\mu s^-) = 10V + 3.6mA \cdot 40\Omega = 10.14V$$

* $t = 25 \mu s^+ => La$ señal de entrada vuelve a conmutar a 2 V y el transistor vuelve a conducir tendiendo a la situación de régimen permanente resuelta en el primer punto de este problema. Inicialmente la bobina tiene una corriente $I_L = 3,6$ mA e irá cargándose hasta la corriente final en régimen permanente de 9,8 mA. Al cargarse la bobina aparece una tensión entre sus bornes que pone al diodo en corte y esto implica que: $I_L(25\mu s^+) = 3,6mA = I_C < \beta \cdot I_B = 36mA => Transistor saturado$ El circuito equivalente sería:


$$I_{L}(25\mu s^{+}) = 3,6mA \Rightarrow V_{O}(25\mu s^{+}) = 0,2V + I_{L}(25\mu s^{+}) \cdot 1K = 0,2V + 3,6mA \cdot 1K = 3,8V$$

$$I_{F} = 9,8mA \qquad I_{O} = 3,6mA \qquad \tau' = \frac{1mH}{1K} = 1\mu s$$
Como la constante de tiempo de carga τ' es muchísimo menor que el tiempo que tiene para carga se carga τ' es muchísimo menor que el tiempo que tiene para carga se carga τ' es muchísimo menor que el tiempo que tiene para carga se carga τ' es muchísimo menor que el tiempo que tiene para carga se carga τ' es muchísimo menor que el tiempo que tiene para carga τ' es muchísimo el tiene para carga τ' es muchísi

Como la constante de tiempo de carga τ ' es muchísimo menor que el tiempo que tiene para cargarse (25 μs), entonces la carga de la bobina es muy rápida y se puede decir que en t = 50 μs (cuando se produce la próxima conmutación) la bobina ha alcanzado su régimen permanente con I_L = 9,8 mA y vuelve a ser un cortocircuito y V_O (50 μs) = 10 V.

Y todo este proceso se vuelve a repetir sucesivamente en las siguientes conmutaciones.

Por lo tanto, la evolución temporal de Vo sería la siguiente:

